Chapter 4: Reactions in Aqueous Solutions

Water

- 60 \% of our bodies
- heat modulator
- solvent for reactions
- covers 70% of Earth

Chapter 43 types of reactions that occur in $\mathrm{H}_{2} \mathrm{O}$

1. precipitation
2. acid-base
3. redox

4.1 General Properties of Aqueous ($\mathrm{H}_{2} \mathrm{O}$) Solutions (soln)

- solution - homogeneous (uniform) mixture of two or more substances, consisting of:
solvent - the bulk medium, e.g., $\mathrm{H}_{2} \mathrm{O}$ (usually the larger amount)
solute(s) - the dissolved substance(s), e.g., NaCl (usually present in lesser quantities)
aqueous soln $-\mathrm{H}_{2} \mathrm{O}$ is the solvent
- concentration - measure of relative solute/solvent ratio
- standard solution - accurately known concentration
- saturated solution - contains maximum amount of solute
- solubility - concentration of a saturated solution, e.g.,
solubility of NaCl is about $36 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$ ("soluble")
solubility of CuS is about $10^{-5} \mathrm{~g}$ CuS / $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ ("insoluble")
- precipitate - an "insoluble" reaction product
e.g., a precipitation reaction where the precipitate is AgCl :
$\mathrm{NaCl}(a q)+\mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$
- Electrolytes - solutes that produce ions in solution via dissociation (these solutions can conduct electricity)
e.g.,

$$
\mathrm{NaCl}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(s) \longrightarrow 2 \mathrm{NH}_{4}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q)
$$

- ions dissolve in $\mathrm{H}_{2} \mathrm{O}$ because it is polar (see Fig 4.2)
- hydration -- process of surrounding ions by $\mathrm{H}_{2} \mathrm{O}$

1. "strong" electrolytes -- 100% ionized salts and acids can be electrolytes

$$
\mathrm{HCl}(g) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

2. "weak" electrolytes -- substances that are partially ionized (< 100\%) weak acid (acetic acid)

$$
\underset{99 \%}{\mathrm{CH}_{3} \mathrm{COOH}}+\mathrm{H}_{2} \mathrm{O} \underset{\substack{\text { reversible } \\ \text { reaction }}}{\mathrm{H}_{3} \mathrm{O}(a q)+\underset{1 \%}{\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)}}
$$

3. non-electrolytes -- substances that are not ionized and do not conduct electricity

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \text { (NO ions) }
$$

Memorize the Strong, Weak, Non-Electrolytes Table 4.1, page 117 or chart below \Downarrow

Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
HNO_{3}	HF	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{6}$ (sucrose)
HClO_{4}	HNO_{2}	$\mathrm{CH}_{3} \mathrm{OH}$ (methanol)
$\mathrm{H}_{2} \mathrm{SO}_{4}$	NH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)
soluble bases with OH^{-},	$\mathrm{H}_{2} \mathrm{O}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)
i.e., $\mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}$		

4.2 Precipitation Reactions

These are reactions that occur when aqueous solns are mixed and the reaction produces insoluble product (precipitate)
A. Solubility

- maximum amount of solute that will dissolve in a given quantity of solvent
- formation of insoluble product makes a reaction occur because it prevents the products from reforming the original reactants

Memorize the Solubility Rules Table 4.2, page 119
 or chart below \downarrow

Solubility Rules for Common Ionic Compounds in Water

Examples:

$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	insoluble	CuS	insoluble
CaCO_{3}	insoluble	$\mathrm{Cu}(\mathrm{OH})_{2}$	insoluble
$\mathrm{Na}_{3} \mathrm{PO}_{4}$	soluble	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	soluble

B. Molecular and Ionic Equations

Metathesis Reaction (also called "double displacement")

Ions from two different reactants simply trade partners,

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow \mathrm{BaCO}_{3}(s)+2 \mathrm{NaNO}_{3}(a q)
$$

This was written as a molecular equation in which all reactants and products are shown as complete, neutral chemical formulas.

It could also have been written as a complete ionic equation in which all soluble ionic compounds are split up into their ions,
$2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$

$$
\longrightarrow \mathrm{BaCO}_{3}(s)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)
$$

Here, the Na^{+}and NO_{3}^{-}ions are called "spectator ions" because they appear unchanged on both sides of the equation.
The spectator ions do not participate in the chemically important part of the reaction -- the precipitation of BaCO_{3}

The essential chemical process can be written without the spectator ions in the
net ionic equation,

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \longrightarrow \mathrm{BaCO}_{3}(s)
$$

The net ionic equation shows that, in general, a precipitate of BaCO_{3} will form whenever the ions Ba^{2+} and $\mathrm{CO}_{3}{ }^{2-}$ are combined in aqueous solution, regardless of their sources.

Summary of the three types of balanced chemical equations

Molecular Equation

- shows all compounds with complete, neutral molecular formulas
- useful in planning experiments and stoichiometry calculations

Ionic Equation (complete)

- all strong electrolytes are shown in their dissociated, ionic forms
- insoluble substances and weak electrolytes are shown in their molecular form
- spectator ions" are included
- useful for showing all details of what is happening in the reaction

Net lonic Equation

- "spectator ions" are omitted
- only the essential chemical process is shown, i.e., formation of a:
- solid precipitate,
- gaseous product, or
- weak electrolyte (e.g.,, water)
- useful for generalizing the reaction -- same important product can often be formed from different sets of reactants

When will a precipitate form?

KNOW the ELECTROLYTES and SOLUBILITY RULES
Tables 4.1 and 4.2 !!!

Example:

Write the net ionic equation for the reaction of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ with NaOH in water.

Step 1: Write the molecular reaction
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow$???
switch ions and check for solubility
Is $\mathrm{Al}(\mathrm{OH})_{3}$ soluble?
No

$$
\begin{array}{r}
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\mathrm{NaOH}(a q) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(s)+\mathrm{NaNO}_{3}(a q) \\
\text { this is soluble }
\end{array}
$$

Step 2: Balance the molecular equation

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{NaOH}(a q) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(s)+3 \mathrm{NaNO}_{3}(a q)
$$

Step 3: Show dissociated ions - ionic equation

$$
\begin{array}{r}
\mathrm{Al}^{+3}(\mathrm{aq})+3\left(\mathrm{NO}_{3}^{-}\right)(\mathrm{aq})+3 \mathrm{Na}^{+}(a q)+3 \mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}^{+}(\mathrm{aq})+3 \mathrm{NO}_{3^{-}}(\mathrm{aq})
\end{array}
$$

Step 4: Cancel spectator ions

$$
\begin{aligned}
\mathrm{Al}^{+3}(\mathrm{aq})+3\left(\mathrm{NO}_{3^{-}}^{-}-(\mathrm{aq})\right. & +3 \mathrm{Na}^{+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
\end{aligned} \quad \begin{aligned}
& \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}^{+} \text {(aq) }+3 \mathrm{NO}_{3^{-}} \text {(aq) }
\end{aligned}
$$

Step 5: Write the net ionic equation

$$
\mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(s)
$$

4.3 Acid-Base Reactions

Arrhenius definition:

Acids give H^{+}when dissolved in water and bases give OH^{-}.
Common acids: vinegar, lemon juice, aspirin
Common bases: milk of magnesia, lye

A. Properties of acids

- taste sour
- cause color changes in dyes (litmus: blue to red)
- react with metals $(\mathrm{Zn}, \mathrm{Mg}, \mathrm{Fe})$ to form H_{2} gas

$$
2 \mathrm{HCl}(a q)+\mathrm{Mg}(s) \longrightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

- react with carbonates and bicarbonates to form CO_{2} gas

$$
2 \mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(I)+\mathrm{CO}_{2}(g)
$$

- aqueous solutions conduct electricity (because there are ions present)
- react with bases to form salts and water

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}
$$

B. Properties of Bases

- taste bitter
- feel slippery (e.g., soaps)
- cause color changes in dyes (litmus: red to blue)
- aqueous solutions conduct electricity (because there are ions present)
- react with acids to form salts and water

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}
$$

C. Bronsted definition (broader)

Acid - proton $\left(\mathrm{H}^{+}\right)$donor Base - proton acceptor

Bronsted Acid

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

more correctly
$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
$\mathrm{H}_{3} \mathrm{O}^{+}$is a hydrated proton called the hydronium ion

- monoprotic acids - donate one hydrogen ion upon ionization

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- diprotic acids - donate two hydrogen ions upon ionization

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q)
$$

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \quad \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q)
$$

2 steps with the second being incomplete

- triprotic acids - donate three hydrogen atom $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$

Bronsted base

$$
\begin{aligned}
& \mathrm{NaOH}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \text { proton acceptor }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \\
& \mathrm{H}^{+} \text {acceptor }
\end{aligned}
$$

weak electrolyte since it only partially dissociates

D. Acid-Base Neutralization

$$
\begin{gathered}
\text { acid }+ \text { base } \longrightarrow \text { salt }+ \text { water } \text { (neutralization reaction) } \\
\mathrm{HNO}_{3}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \\
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{KOH}(a q) \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(I)
\end{gathered}
$$

ionic equation:

$$
\begin{aligned}
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3^{-}}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq}) & +\mathrm{NO}_{3^{-}}^{-}(\mathrm{aq}) \\
+ & \mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

net ionic equation:

$$
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I)
$$

4.4 Oxidation-Reduction Reactions

- reduction-oxidation - redox
- electron transfer reactions

Examples: burning fossil fuels, bleach, rusting
some occur in water, others don't

$$
2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}
$$

Overall process involves two Half Reactions:
oxidation -- loss of electron(s)
reduction -- gain of electron(s)
half reactions:

$$
\begin{array}{ll}
\mathrm{Na} \longrightarrow \mathrm{Na}^{+}+\mathrm{e}^{-} & \text {(oxidation) } \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-} & \text {(reduction) }
\end{array}
$$

related terms:
oxidizing agent $=$ the substance that is reduced $\left(\mathrm{Cl}_{2}\right)$
reducing agent $=$ the substance that is oxidized (Na)
Oxidation and reduction always occur together so that there is no net loss or gain of electrons overall.

A. Oxidation Numbers (oxidation states)

sometimes electron transfer is not as clear cut, but because partial transfer of electrons occurs it is still a redox reaction

$$
\mathrm{S}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g)
$$

Oxidation Number: a "charge" that is assigned to an atom to aid in balancing redox reactions

Generally, oxidation number is the charge that would result if all of the bonding electrons around an atom were assigned to the more electronegative element(s).

Learn Rules for assigning oxidation numbers see page 129 or below \Downarrow

Practice with many examples!!!

1. Free elements - oxidation number $=0$

Chapter 4
2. lons of one atom: oxidation number $=$ charge
3. Oxygen - usually -2 ; in peroxides $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right), \mathrm{O}=-1$
4. Hydrogen is usually +1 , except when bonded to metals, e.g., LiH, NaH in which $\mathrm{H}=-1$
5. $\mathrm{F}=-1 ; \quad \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ (ions) $=-1$, but as molecular compounds, the charge varies and is positive
6. Sum of oxidation numbers $=0$ in neutral compounds and equals the charge in polyatomic ions
7. Oxidation numbers are not always integers, e.g., O_{2}^{-}(superoxides) $=-1 / 2$

Thus for

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})
$$

- $S(s)=0$
- $\mathrm{O}_{2}(g)=0$
- SO_{2} (g): $\mathrm{S}=+4$ and $\mathrm{O}=-2$
e.g., assign all oxidation numbers in:
$\begin{array}{llllll}\mathrm{Ag}_{2} \mathrm{~S} & \mathrm{ClO}_{3}{ }^{-} \quad \mathrm{ClO}_{4}-\quad \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O}_{2}\end{array}$
AgS: $\quad \mathrm{Ag}=+1 ; \mathrm{S}=-2$
$\mathrm{ClO}_{3}-: \quad \mathrm{Cl}=+5, \mathrm{O}=-2$; total adds to -1
$\mathrm{ClO}_{4}^{-}: \quad \mathrm{Cl}=+7, \mathrm{O}=-2$
$\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}: \mathrm{Cr}=+3, \mathrm{~N}=+5, \mathrm{O}=-2$

B. Types of Redox Reactions

- combination
- decomposition
- displacement
- disproportionation

1. Combination Reactions

- $A+B \longrightarrow C$
- two or more substances combine to form a single product
- $3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$

2. Decomposition Reactions

- $\mathrm{C} \longrightarrow \mathrm{A}+\mathrm{B}$
- breakdown to 2 or more substances
- $2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

3. Displacement Reactions

- $A+B C \longrightarrow A C+B$
- ion or atom is replaced by another
- 3 subcategories
- hydrogen displacement
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
- metal displacement
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
$\mathrm{Zn}+\mathrm{CuSO}_{4} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
but Cu will not replace Zn and Ag will not replace Cu activity (electrochemical) series (see Figure 4.15)
summary of possibility of displacement reactions
halogen displacement

$$
\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2} ? \mathrm{I}_{2}
$$

power as oxidizing agents (electron thieves)
$\mathrm{Cl}_{2}+2 \mathrm{KBr} \longrightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$
$\mathrm{Br}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$
4. Disproportionation

- simultaneous oxidation and reduction of an element with multiple oxidation states.
- $\mathbf{2 ~}_{-1}^{\mathrm{H}_{2} \mathrm{O}_{2}} \longrightarrow \underset{-2}{\mathbf{2}} \mathrm{H}_{2} \mathrm{O} \underset{0}{+\mathrm{O}_{2}}$
- $\mathrm{Cl}_{-0}+\underset{-2,+1}{\mathrm{OH}^{-}} \longrightarrow+\mathrm{ClO}^{-}-2+\underset{-1}{\mathrm{Cl}^{-}}+\underset{+1,-2}{\mathrm{H}_{2} \mathrm{O}}$

C. Balancing Redox Reactions

Chapter 19, pages 798 to 800

ION-ELECTRON METHOD for Balancing Redox Equations

1. Write unbalanced ionic equations for the two half-reactions.
(Look at oxidation numbers in the "skeleton equation")
2. Balance atoms other than H and O .
3. Balance O with $\mathrm{H}_{2} \mathrm{O}$.
4. Balance H with H^{+}.
5. Balance charge with appropriate number of electrons.
6. If in acidic solution, then skip to step 7. If in basic solution, then add equal number of OH^{-}to both sides to cancel all of the H^{+}.
7. Rewrite the balanced half reactions.
8. Multiply balanced half-reactions by appropriate coefficients so that the number of electrons are equal.
9. Add the half-reactions together.
10. Cancel species that appear on both sides to get the balanced Net lonic Equation.
11. If necessary, add spectator ions to get the balanced molecular equation.

Check the Final Balance (atoms and charges)!

Example:

Balance the following reaction that occurs in acidic medium using the ion-electron method.

$$
\mathrm{Fe}^{+2}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{Mn}^{+2}
$$

Example: (do this one on your own)
Balance the following reaction that occurs in basic solution. Write complete, balanced equations for the oxidation and reduction half-reactions and the net ionic equation.

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{NO}+\mathrm{Br}^{-}
$$

(1) Check oxidation numbers to determine what is oxidized and what is reduced.

Bromine goes from +5 in $\mathrm{BrO}_{3}{ }^{-}$to -1 in Br^{-}. Thus, $\mathrm{BrO}_{3}{ }^{-}$is being reduced.
Nitrogen goes from -2 in $\mathrm{N}_{2} \mathrm{H}_{4}$ to +2 in NO . Thus, $\mathrm{N}_{2} \mathrm{H}_{4}$ is being oxidized.
So, the two unbalanced half reactions are:

| Reduction: | $\mathrm{BrO}_{3}{ }^{-} \longrightarrow \mathrm{Br}^{-}$ |
| :--- | :--- | :--- |
| Oxidation: | $\mathrm{N}_{\mathbf{2}} \mathrm{H}_{\mathbf{4}} \longrightarrow \mathrm{NO}$ |

(2) Balance atoms other than H and $\mathrm{O}: \mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}$
(3) Balance O with $\mathrm{H}_{2} \mathrm{O}$, and then
(4) Balance H with H^{+}

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}^{\longrightarrow}+8 \mathrm{H}^{+} \\
& 6 \mathrm{H}^{+}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(Note: the atoms are balanced at this point but the charges are not!)
(5) Balance charge with electrons

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \\
& 6 \mathrm{e}^{-}+6 \mathrm{H}^{+}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(6) Since the reaction is occurring in basic solution, the hydrogen ions (H^{+}) must be neutralized by adding equal numbers of OH^{-}ions to both sides of the equations.

$$
\begin{aligned}
& 8 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-}+8 \mathrm{OH}^{-} \\
& 6 \mathrm{OH}^{-}+6 \mathrm{e}^{-}+6 \mathrm{H}^{+}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{OH}^{-}
\end{aligned}
$$

Now simplify by combining H^{+}with OH^{-}and subtracting $\mathrm{H}_{2} \mathrm{O}$ where possible

$$
\begin{array}{ll}
\text { Oxidation: } & 8 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}+8 \mathrm{e}^{-}+6 \mathrm{H}_{2} \mathrm{O} \\
\text { Reduction: } & 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}+\mathrm{BrO}_{3}-\longrightarrow \mathrm{Br}^{-}+6 \mathrm{OH}^{-}
\end{array}
$$

(7) You should now have the complete, balanced half-reactions! Rewrite them and check the balance of all atoms and charges.
(8) Multiply the balanced half-reactions by appropriate coefficients to make the number of electrons cancel. In this case, multiply the reduction by 3 and the oxidation by 4 for a total of 24 electrons on each side.

$$
\begin{gathered}
3 \times\left[8 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 2 \mathrm{NO}+8 \mathrm{e}^{-}+6 \mathrm{H}_{2} \mathrm{O}\right] \\
\text { i.e., } 24 \mathrm{OH}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow 6 \mathrm{NO}+24 \mathrm{e}^{-}+18 \mathrm{H}_{2} \mathrm{O} \\
4 \times\left[3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{Br}^{-}+6 \mathrm{OH}^{-}\right] \\
\text {i.e., } 12 \mathrm{H}_{2} \mathrm{O}+24 \mathrm{e}^{-}+4 \mathrm{BrO}_{3}^{-} \longrightarrow 4 \mathrm{Br}^{-}+24 \mathrm{OH}^{-}
\end{gathered}
$$

(9) Add the half-reactions together, being careful not to omit anything.
$24 \mathrm{OH}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4}+12 \mathrm{H}_{2} \mathrm{O}+24 \mathrm{e}^{-}+4 \mathrm{BrO}_{3}^{-} \longrightarrow 4 \mathrm{Br}^{-}+24 \mathrm{OH}^{-}+6 \mathrm{NO}+24 \mathrm{e}^{-}+18 \mathrm{H}_{2} \mathrm{O}$
(10) Cancel species like $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$, or H^{+}that may appear on both sides. In this case, subtract $24 \mathrm{e}^{-}, 24 \mathrm{OH}^{-}$and $12 \mathrm{H}_{2} \mathrm{O}$ from each side.

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}+4 \mathrm{BrO}_{3}^{-} \longrightarrow 4 \mathrm{Br}^{-}+6 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

(11) If necessary add spectator ions to get the balanced molecular equation. That is not possible in this case because we started with an unbalanced ionic equation. Then, check the final balance -- all atoms and total charges must be equal on both sides of the equations.

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}+4 \mathrm{BrO}_{3}^{-} \longrightarrow 4 \mathrm{Br}^{-}+6 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Summary

acid-base reactions - transfer of H^{+}
redox reactions - transfer of electrons or change in oxidation \#

4.5 Concentration of Solutions

- to do reactions in solution, need to control amounts
- concentration - amount of solute in a given quantity of solvent

A. Molar Concentration (Molarity)

Molarity $(M)=$ moles solute $/$ liter of solution

- units: moles/L or moles $/ 1000 \mathrm{~mL}$
- another conversion factor

Thus, 0.10 M NaCl solution contains 0.10 mole or 5.84 g NaCl per liter of solution

Example:

What mass of MgCl_{2} is required to prepare 60.0 mL of 0.100 M solution?

1st - find moles of MgCl_{2} required:
$60.0 \mathrm{~mL} \quad \mathrm{x} \frac{0.100 \text { moles } \mathrm{MgCl}_{2}}{1000 \mathrm{~mL}}=0.0060$ moles MgCl_{2}
2nd - convert to grams of MgCl_{2} :
0.0060 moles $\mathrm{MgCl}_{2} \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mole} \mathrm{MgCl}_{2}}=0.572 \mathrm{~g} \mathrm{MgCl}_{2}$

- Prepare this solution by weighing $0.572 \mathrm{~g} \mathrm{MgCl}_{2}$, dissolving in some $\mathrm{H}_{2} \mathrm{O}$ (about 30 mL), and then diluting to the 60.0 mL mark. (see Fig.4.18)
- In this solution

$$
\mathrm{MgCl}_{2} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}
$$

- Concentration $\left[\mathrm{Mg}^{2+}\right]=0.100 \mathrm{M}$
- Concentration $\left[\mathrm{Cl}^{-}\right]=0.200 \mathrm{M}$
- every mole of MgCl_{2} gives 3 moles of ions: 2 moles of Cl^{-} and 1 mole of Mg^{2+}

B. Dilution of Concentrated Solutions

concentrated solution $+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ dilute solution
$(\text { moles solute })_{\text {conc }}=($ moles solute $)$ dil
$(\text { moles solute })_{\text {before dilution }}=($ moles solute $)$ moles after dilution

$$
V_{i} M_{i}=V_{f} M_{f} \quad(\text { where } i=\text { initial and } f=\text { final })
$$

USE THIS ONLY FOR DILUTION !!!!

not for acid-base titration!!!!

Example:

A 5.00 M NaCl "stock" solution is available. How would prepare 300 mL of a 0.100 M NaCl "standard" solution?

$$
\begin{aligned}
& V_{i} \times(5.00 \mathrm{M})=(300 \mathrm{~mL}) \times(0.100 \mathrm{M}) \\
& \qquad V_{i}=(300 \mathrm{~mL}) \times(0.100 \mathrm{M}) /(5.00 \mathrm{M})=6.00 \mathrm{~mL}
\end{aligned}
$$

Measure out 6.00 mL of the 5.00 M "stock" solution, then add $\mathrm{H}_{2} \mathrm{O}$ to a total volume of 300 mL .

4.6 Gravimetric Analysis

(Stoichiometry of Reactions in Solution)
analytical technique based on measuring mass of precipitate

Use the Mole Method!!!

Example:

For the following reaction,

$$
2 \mathrm{AgNO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \longrightarrow 2 \mathrm{AgCl}(s)+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)
$$

(a) What volume of $0.250 \mathrm{M} \mathrm{AgNO}_{3}$ is required to react completely with 250 mL of $0.400 \mathrm{M} \mathrm{CaCl}_{2}$?
(b) What mass of AgCl should be produced?
stoichiometry: 2 mole $\mathrm{AgNO}_{3} \Leftrightarrow 1$ mole $\mathrm{CaCl}_{2} \Leftrightarrow 2$ mole AgCl

Part (a): volume of AgNO_{3} ?
1st, find moles of CaCl_{2}

$$
(250 \mathrm{~mL}) \times \frac{0.400 \mathrm{~mole}}{1,000 \mathrm{~mL}}=0.100 \mathrm{~mole} \mathrm{CaCl}_{2}
$$

2nd, find moles of AgNO_{3}

$$
\left(0.100 \mathrm{~mole} \mathrm{CaCl}_{2}\right) \times \frac{2 \mathrm{~mole} \mathrm{AgNO}_{3}}{1 \mathrm{~mole} \mathrm{CaCl}_{2}}=0.200{\mathrm{~mole} \mathrm{AgNO}_{3}}^{2}
$$

3rd, find volume of AgNO_{3} solution
$\left(0.200{\mathrm{~mole} \mathrm{AgNO}_{3} \text {) } \times \frac{1,000 \mathrm{~mL} \mathrm{AgNO}_{3}}{0.250 \mathrm{~mole} \mathrm{AgNO}_{3}}=800 \mathrm{~mL} \mathrm{AgNO} 3}\right.$
Part (b): mass of AgCl ?
$\left(0.100 \mathrm{~mole} \mathrm{CaCl}_{2}\right) \times \frac{2 \mathrm{~mole} \mathrm{AgCl}^{2}}{1 \mathrm{~mole} \mathrm{CaCl}_{2}}=0.200 \mathrm{~mole} \mathrm{AgCl}$
$(0.200$ mole AgCl$) \times \frac{143 \mathrm{~g} \mathrm{AgCl}}{1 \mathrm{~mole} \mathrm{AgCl}}=28.6 \mathrm{~g}$

Example:

A sample of 0.3220 g of an ionic compound containing Br^{-}is dissolved in $\mathrm{H}_{2} \mathrm{O}$ and treated with excess AgNO_{3}. If the mass of AgBr precipitate that forms is 0.6964 g , what is the percent by mass of Br^{-}in the original compound?

$$
\mathrm{AgNO}_{3}+\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr}(s)+\mathrm{NO}_{3}^{-}
$$

$\frac{\text { mass of } \mathrm{Br}^{-}}{\text {total mass }} \times 100 \%=$ percent Br^{-}

1st calculate mass of Br^{-}

$$
\mathrm{g} \mathrm{Br}^{-}=0.6964 \mathrm{~g} \mathrm{AgBr} \times \frac{1 \text { mole AgBr}}{187.8 \mathrm{~g}} \times \frac{1 \mathrm{~mole} \mathrm{Br}^{-}}{1 \mathrm{~mole} \mathrm{AgBr}} \times \frac{79.90 \mathrm{~g}}{1 \mathrm{~mole} \mathrm{Br}^{-}}
$$

mass $\mathrm{Br}^{-}=0.2963 \mathrm{~g}$

2nd calculate the percent of Br^{-}relative to the whole sample

$$
\frac{0.2963 \mathrm{~g}}{0.3220 \mathrm{~g}} \times 100 \% \quad=\quad 92.01 \%
$$

4.7 Acid-Base Titrations

another way to determine the quantity or amount of something in an unknown sample

Titration: An unknown amount of one reactant is combined exactly with a precisely measured volume of a standard solution of the other.

End-point: When exact stoichiometric amounts of two reactants have been combined. (also called equivalence-point or in acid-base reactions, the point of neutralization)

Indicator: Substance added to aid in detection of the endpoint (usually via a color change). For acid base titrations this is often phenothalien (colorless in acid and pink in solution)

Example:

Vinegar is an aqueous solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, which is often written as HAc for simplicity. A 12.5 mL sample of vinegar was titrated with a 0.504 M solution of NaOH . The titration required 15.40 mL of the base solution in order to reach the endpoint. What is the molar concentration of HAc in vinegar?

$$
\mathrm{NaOH}(a q)+\mathrm{HAc}(a q) \longrightarrow \mathrm{NaAc}(a q)+\mathrm{H}_{2} \mathrm{O}
$$

moles $\mathrm{NaOH}=$ moles HAc
$(15.4 \mathrm{~mL} \mathrm{NaOH}) \times \frac{0.504 \mathrm{~mole} \mathrm{NaOH}}{1,000 \mathrm{~mL}} \times \frac{1 \text { mole } \mathrm{HAc}}{1 \text { mole NaOH }}$

$$
=0.007762 \text { mole HAc }
$$

Molarity HAc $=\frac{0.007762 \text { mole HAC }}{12.5 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1.00 \mathrm{~L}}$

$$
\mathrm{M} \mathrm{HAc}=0.621 \mathrm{M}
$$

4.8 Redox Titrations

indicators - often one of the species involved in the reaction that changes color

$\mathrm{MnO}_{4}{ }^{-} \longrightarrow \mathrm{Mn}^{2+}$
purple light pink

Example:

How many mL of 0.206 M HI solution are needed to reduce 22.5 mL of a 0.374 M KMnO 4 solution?
$10 \mathrm{HI}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{I}_{2}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
step 1: moles KMnO_{4}
$22.5 \mathrm{~mL} \times \frac{0.374 \text { moles } \mathrm{KMnO}_{4}}{\mathrm{~L}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=8.415 \times 10^{-3}$ moles KMnO_{4}
step 2: moles HI
8.415×10^{-3} moles $\mathrm{KMnO}_{4} \times \frac{10 \text { mole } \mathrm{HI}}{2 \text { moles } \mathrm{KMnO}_{4}}=4.208 \times 10^{-2}$ moles HI
step 3: volume HI
4.208×10^{-2} moles $\mathrm{HI} \times \frac{1 \mathrm{~L}}{0.206 \mathrm{moles} \mathrm{HI}}=0.204 \mathrm{~L}$ or 204 mL

The alcohol content in a 10.0 g sample of blood from a driver required 4.23 mL of $0.07654 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for titration. Should police prosecute for intoxication if the legal limit is 0.1 \% by mass?

Calculate the concentration of acid or base remaining when 10.7 mL of $0.211 \mathrm{M} \mathrm{HNO}_{3}$ are added to 16.3 mL of 0.258 M NaOH .

