Chapter 6: Thermochemistry

Chemical reactions obey 2 laws:
- conservation of mass (previous chapters)
- conservation of energy (this chapter)

6.1 Energy and Types of Energy

A. Definitions

- **Energy** - capacity to do work
- **Work** - (physicists) force x distance
 (chemists definition) directed energy change resulting from a process

B. Types of Energy

1. **Kinetic Energy** - energy produced by moving object
 \[K.E = \frac{1}{2} m v^2 \] where \(m \) = mass and \(v \) = velocity

2. **Radiant energy** - (solar energy) energy from the sun; from chemical reactions of the sun; affect weather and plant growth

3. **Thermal energy** - associated with random motion of atoms and molecules.
 - may be calculated from the temperature and amount of molecules
 - Example: cup of coffee at 70 °C has less thermal energy than a bathtub of water at 40 °C

4. **Potential Energy** - energy available by virtue of an objects position, e.g., rock at the top of a cliff

5. **Chemical Energy** - energy stored in bonds; potential energy associated with chemical bonds:
bond breaking: energy is required
bond making: energy is liberated

All forms of energy may theoretically be converted to other forms of energy.

Law of Conservation of Energy - the total quantity of energy in the Universe is constant.

6.2 Energy Changes in Chemical Reactions

These are as important as the mass changes, e.g., combustion of hydrocarbons is done to make use of the energy liberated in the reaction.

1. **Heat** - (generally the form of energy in chemical reactions) transfer of thermal energy between two bodies at different temperatures:

 \[\text{hotter} \rightarrow \text{colder} \]

2. **Thermochemistry** - study of heat changes in chemical reactions

3. **System** - part of the Universe of interest to us (beaker, automobile.....)

4. **Surroundings** - rest of the Universe

5. **Types of Systems:**
 - **open system** - exchanges mass and energy (usually heat) with surroundings; e.g., open beaker of H2O (water can evaporate)
 - **closed system** - allows heat transfer, not mass transfer; e.g. beaker with lid
 - **isolated system** - allows no heat or mass transfer; e.g., insulated beaker with a lid
Exothermic process -
• gives off heat
• transfers heat to surroundings
• heat is essentially a product of the reaction
• system warms up

6. Endothermic process -
• heat must be supplied by the surroundings
• heat is essentially a reactant
• system cools off

\[
\begin{align*}
&\text{Exothermic: heat given off by the system to the surroundings} \\
\text{2H}_2(g) + \text{O}_2(g) &\rightarrow \text{2H}_2\text{O}(l) \\
\text{Endothermic: heat absorbed by the system from the surroundings} \\
\text{2Hg}(l) + \text{O}_2(g) &\rightarrow \text{2HgO}(s)
\end{align*}
\]
6.3 Introduction to Thermodynamics

Thermodynamics – (broader than thermochemistry)
scientific study of the interconversion of heat and other kinds of energy

1. *State Functions*

 state of a system – defined by macroscopic properties, i.e. composition, energy, temperature, pressure, volume

 our concern – change in the system from the point of initial and final states

 so if the volume changes we want to know \(\Delta V = V_f - V_i \)

 Energy is a state function

Figure 6.4 Gain in potential energy is the same here (gravitational pull) regardless of pathway.
First Law of Thermodynamics

Energy can be converted from one form to another, but cannot be created or destroyed.

Potential energy to kinetic energy

Example is a chemical reaction, e.g., burning sulfur

\[
S(s) + O_2(g) \longrightarrow SO_2(g)
\]

cannot know exactly the total energy in the S, O₂, and SO₂, but can measure the change in energy (in this case heat evolved)

\[
\Delta E = E_{\text{prod}} - E_{\text{reac}}
\]

\[
\Delta E_{\text{system}} = \Delta E_{\text{surroundings}}
\]

\[
\Delta E_{\text{system}} = q + w \quad \text{where } q = \text{heat exchanged}; w = \text{work}
\]

\(q \) and \(w \) are **negative** if heat moves **out** of system or work is **done by** the system

and \(w \) are **positive** if heat is **added to** system or work is **done on** the system
Work involving gases

Figure 6.5
piston moves upward as gas expands
w = force x distance

\[w = - P \Delta V \]

units of work = L-atm
conversion factor: 1 L-atm = 101.3 J

Example:
A gas expands from 264 mL to 971 mL at constant temperature. Calculate the work done in joules by the gas if it expands (a) against a vacuum and (b) against a constant pressure of 4.00 atm.
6.4 Enthalpy, \(H \), of Chemical Reactions

- the total energy of a chemical system at constant pressure (conditions of most reactions)
- depends on amount of substance
- cannot measure enthalpy directly, but can measure changes in enthalpy
- \(\Delta H = H_{\text{products}} - H_{\text{reactants}} \)

Endothermic reaction: \(\Delta H > 0 \) (positive) -- heat is absorbed (deposit)

Exothermic reaction: \(\Delta H < 0 \) (negative) -- heat is released (withdrawal)

This semester we'll be concerned primarily with \(\Delta H \) and not \(\Delta E \)

Enthalpy and the First Law of Thermodynamics

Enthalpy (\(H \)) of system:

\[
H = E + PV
\]

Change in enthalpy (at constant pressure)

(change is what we can easily measure)

\[
\Delta H = \Delta E + \Delta PV
\]

or rearranged

\[
\Delta E = \Delta H - \Delta PV
\]

remember that \(\Delta E_{\text{system}} = q + w \)

so \(q = \Delta H \) at constant pressure

and \(PV = nRT \), so

\[
\Delta H = \Delta E + RT\Delta n
\]

\[
\Delta E = \Delta H - RT\Delta n
\]
Thermochemical Equations

Example: One mole of ice melts to liquid at 0 °C. (1 atmosphere, a standard condition)

- 18 grams (1 mole) of ice
- 6.01 kJ of energy absorbed
- \(\Delta H = 6.01 \text{ kJ} \)
- If the process is reversed, i.e., the liquid water is frozen, then \(\Delta H = -6.01 \text{ kJ} \)

Some energy conversion factors

\[
1 \text{ Joule} = 1 \text{ J} = 1 \text{ Kg m}^2/\text{s}^2 = 1 \text{ N} \cdot \text{m}
\]

where \(N = \text{Newton}, m = \text{meters}, s = \text{seconds} \)

- 1 kJ = 1000 J
- 4.184 J = 1 cal
- 1000 cal = 1 Kcal = 1 Calorie (Food Calorie)

For example: The reaction for the combustion of ethylene:

\[
\text{C}_2\text{H}_4 (g) + 3 \text{ O}_2 (g) \rightarrow 2 \text{ CO}_2 (g) + 2 \text{ H}_2\text{O} (l)
\]

\(\Delta H^\circ = -1,411 \text{ kJ} \) (very exothermic)

i.e., 1,411 kJ of heat energy are released in the reaction of 1 mole of \(\text{C}_2\text{H}_4 \) with 3 moles of \(\text{O}_2 \)

Rules for thermochemical equations:

- work in moles
- reversing an equation reverses the sign of \(\Delta H \)
- multiplying the equation by a factor applies to \(\Delta H \) as well as to moles
- must specify state of reaction and products

Example: If 10.0 g of \(\text{C}_2\text{H}_4 \) are burned, how much heat is produced?

\[
10.0 \text{ g} \times \frac{1 \text{ mole} \text{C}_2\text{H}_4}{28.0 \text{ g}} \times \frac{1411 \text{ kJ}}{\text{mole} \text{C}_2\text{H}_4} = 504 \text{ kJ}
\]
6.5 Calorimetry

measurement of heat change

A. **Specific Heat** \((s)\) - amount of heat needed to raise the temperature of 1 gram of a substance by 1 °C. (units are J/g.°C) (intensive property)

B. **Heat Capacity** \((C)\) - amount of heat required to raise the temperature of a given quantity substance by 1 °C. (extensive property)

Example: specific heat of water is 4.184 J/g . °C

heat capacity of 60.0g of water is

\[
\frac{60.0 \text{ g} \times 4.184 \text{ J}}{\text{g.°C}} = \frac{251 \text{ J}}{\text{°C}}
\]

C. Calculating amount of heat from \(s\) and change in temperature \((Δt)\)

\[
q = msΔt \quad \text{where } m = \text{mass}
\]

\[
q = CΔt \quad Δt = \left| \text{change in temperature} \right|
\]

\(q\) is positive for endothermic process
\(q\) is negative for exothermic process

Example:
An iron bar of mass 869 g cools from 94 °C to 5 °C. Calculate the heat released in kJ.

\[
q = msΔt
\]

\[
Δt = 94 \text{ °C} - 5 \text{ °C} = 89 \text{ °C}
\]

from Table 6.1, p. 210: \(s = 0.444 \text{ J/g . °C}\)

\[
q = 869 \text{g} \times \frac{0.444 \text{ J}}{\text{g.°C}} \times 89 \text{ °C} = 34339 \text{ J}
\]

\[
q = -34.3 \text{ kJ} \quad \text{(heat released)}
\]
D. Constant Volume Calorimetry

see Figure 6.8 (isolated system - no heat leaves or enters)
thermometer insulated jacket
ignition wire O₂ inlet
calorimeter bucket bomb
sample cup

Procedure:
• measure starting temperature
• measure mass of sample
• ignite sample
• measure temperature after reaction

\[q_{\text{out of rexn}} = q_{\text{into the bomb and water}} \]
\[q_{\text{system}} = q_{\text{water}} + q_{\text{bomb}} + q_{\text{rxn}} = 0 \]

but we can also say

\[|q_{\text{rxn}}| = |(q_{\text{water}} + q_{\text{bomb}})| \]

\[q_{\text{water}} = ms\Delta t = (m_{\text{water}})(4.184 \text{ J/g } ^\circ\text{C})\Delta t \]

\[q_{\text{bomb}} = C_{\text{bomb}}\Delta t \]

\[C_{\text{bomb}} = (m_{\text{bomb}})(s_{\text{bomb}}) \]

\[
q_{\text{out of rexn}} = q_{\text{into the bomb and water}}
\]

Example

A quantity of 1.922 g of methanol (CH\(_3\)OH) was burned in a bomb calorimeter. Consequently, the temperature of the H\(_2\)O rose by 4.20 \(^\circ\text{C}\). If the quantity of water surrounding the calorimeter was exactly 2000 g and the heat capacity of the calorimeter was 2.02 kJ/\(^\circ\text{C}\), calculate the molar heat of combustion of methanol.

\[
|q_{\text{rxn}}| = |(q_{\text{water}} + q_{\text{bomb}})|
\]

\[
q_{\text{out of rexn}} = q_{\text{into the bomb and water}}
\]

\[
|q_{\text{rxn}}| = \left[\left(\frac{2.02 \times 10^3 \text{ J}}{\text{\degree C}} \right) \times 4.20 \text{ \degree C} \right] + \left(2000 \text{ g} \times \frac{4.184 \text{ J}}{\text{g} \text{ \degree C}} \times 4.20 \text{ \degree C} \right)
\]

\[q_{\text{rxn}} = 8484 \text{ J} + 35145.6 \text{ J} = 43,629.6 \text{ J} = 43.6 \text{ kJ} \]

BUT we know that the rexn was EXOTHERMIC so the \(q_{\text{rxn}} \) is \(- 43.6 \text{ kJ} \) !!!!!

Calculate the molar heat of combustion:

\[
1.922 \text{ g} \times \frac{1 \text{ mole CH}_3\text{OH}}{32.00 \text{ g}} = 0.0601 \text{ moles}
\]

\[
\frac{-43.6 \text{ kJ}}{0.0601 \text{ moles}} = -725 \text{ kJ/mole}
\]
6.6 Standard Enthalpy of Formation and Reaction

cannot measure absolute enthalpy, only the change in enthalpy
thus use a standard (like sea level)- accepted convention

$$\Delta H^\circ_f = \Delta H^\circ \text{ for the formation of one mole of substance from its elements in their standard states at a pressure of one atmosphere}$$

Standard State = 1 atmosphere, 25 °C

\(\Delta H^\circ_f\) for some substances found in Table 6.4 and in Appendix 3

\(\Delta H^\circ_f\) for elements in most stable form is 0

e.g., \(O_2, \Delta H^\circ_f = 0\)

\(O_3, \Delta H^\circ_f = 142 \text{ kJ/mole}\)

\(C_{\text{graphite}}, \Delta H^\circ_f = 0\)

\(C_{\text{diamond}}, \Delta H^\circ_f = 1.90 \text{ kJ/mole}\)

Example of a "formation" reaction (remember: \(\Delta H^\circ_f\) applies to 1 mole of a compound formed from its elements):

\[H_2 (g) + 1/2 O_2 (g) \rightarrow H_2O (l)\]

\(\Delta H^\circ_f\) (liq water) = -286 kJ/mole

practice writing formation reactions -- e.g., \(Na_2SO_4\)

\[2 Na (s) + 2 O_2 (g) + S (s) \rightarrow Na_2SO_4 (s)\]

\(\Delta H^\circ_f = -1385 \text{ kJ/mole}\)
B. Standard Enthalpy of Reaction

\[aA + bB \rightarrow cC + dD \]

\[\Delta H^\circ_{\text{rexn}} = \sum \Delta H^\circ_f (\text{products}) - \sum \Delta H^\circ_f (\text{reactants}) \]

\[\Delta H^\circ_{\text{rexn}} = [c \cdot \Delta H^\circ_f (C) + d \cdot \Delta H^\circ_f (D)] - [a \cdot \Delta H^\circ_f (A) + b \cdot \Delta H^\circ_f (B)] \]

1. **Direct Method** - applies when reactants are elements in most stable state

 \[S \text{ (rhombic)} + 3 F_2 \text{ (g)} \rightarrow SF_6 \text{ (g)} \]

 In these cases may directly measure by doing the reaction

2. **Indirect method** (Hess's Law) (Law of Heat Summation)

 - When reactants are converted to products, the change in \(H \) is the same whether the reaction takes place in one or several steps.
 - This applies when compounds cannot be made directly from the elements

Example

Calculate the \(\Delta H^\circ_f \) of acetylene, \(\text{C}_2\text{H}_2 \) gas from its elements.

\[2 \text{C (graphite)} + \text{H}_2 \text{ (g)} \rightarrow \text{C}_2\text{H}_2 \text{ (g)} \]

The equations for each step and the corresponding enthalpy changes are:

\[\text{C (graphite)} + \text{O}_2\text{(g)} \rightarrow \text{CO}_2 \text{ (g)} \quad \Delta H^\circ_f = -393.5 \text{ kJ} \]

\[\text{H}_2 \text{ (g)} + \frac{1}{2} \text{O}_2 \text{ (g)} \rightarrow \text{H}_2\text{O} \text{ (l)} \quad \Delta H^\circ_f = -285.8 \text{ kJ} \]

\[2 \text{C}_2\text{H}_2 \text{ (g)} + 5 \text{O}_2 \text{ (g)} \rightarrow 4 \text{CO}_2 \text{ (g)} + 2 \text{H}_2\text{O} \text{ (l)} \quad \Delta H^\circ_{\text{rexn}} = -2598.8 \text{ kJ} \]

First: reverse last reaction to put the product (\(\text{C}_2\text{H}_2 \)) on the correct side of the equation

\[4 \text{CO}_2 \text{ (g)} + 2 \text{H}_2\text{O} \text{ (l)} \rightarrow 2 \text{C}_2\text{H}_2 \text{ (g)} + 5 \text{O}_2 \text{ (g)} \quad \Delta H^\circ = +2598.8 \text{ kJ} \]
Second: There is no H$_2$O or CO$_2$ in the formation equation, so place these reagents on opposite sides. The goal is to get these to cancel when the 3 reactions are summed.

\[\text{C (graphite) + O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) \quad \Delta H^\circ_f = -393.5 \text{ kJ} \]
\[\text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \rightarrow \text{H}_2\text{O}(\text{l}) \quad \Delta H^\circ_f = -285.8 \text{ kJ} \]

Third: Multiply by appropriate factors to make sure the same number of each reagent that must be canceled occurs on right and left sides.

\[4 \left[\text{C (graphite) + O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) \right] \quad 4 \Delta H^\circ_f = -1574.0 \text{ kJ} \]
\[2 \left[\text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \rightarrow \text{H}_2\text{O}(\text{l}) \right] \quad 2 \Delta H^\circ_f = -571.6 \text{ kJ} \]
\[4 \text{CO}_2(\text{g}) + 2 \text{H}_2\text{O}(\text{l}) \rightarrow 2 \text{C}_2\text{H}_2(\text{g}) + 5 \text{O}_2(\text{g}) \quad \Delta H^\circ = +2598.8 \text{ kJ} \]
\[4 \left[\text{C (graphite) + H}_2(\text{g}) \rightarrow \text{2C}_2\text{H}_2(\text{g}) \right] \quad 4 \Delta H^\circ = 453.2 \text{ kJ} \]
\[2 \left[\text{C (graphite) + H}_2(\text{g}) \rightarrow \text{C}_2\text{H}_2(\text{g}) \right] \quad 2 \Delta H^\circ = 226.6 \text{ kJ} \]

6.7 Heat of Solution and Dilution
examples: dissolving salts, hot and cold packs in first aid kits

ΔH_{soln} - heat generated or absorbed when a solute dissolves

Lattice Energy (U) - energy required to completely separate one mole of a solid ionic compound into gaseous ions:

\[\text{NaCl (s) + energy} \rightarrow \text{Na}^+(\text{g}) + \text{Cl}^-(\text{g}) \]

ΔH_{hyd} - heat of hydration: enthalpy change associate with hydration

\[\Delta H_{\text{soln}} = \Delta H_{\text{hyd}} + U \]

see Figure 6.11

\[\text{NaCl (s)} \rightarrow \text{Na}^+(\text{g}) + \text{Cl}^-(\text{g}) \quad U = 788 \text{ kJ} \]
\[\text{Na}^+(\text{g}) + \text{Cl}^-(\text{g}) \xrightarrow{\text{H}_2\text{O}} \text{Na}^+(\text{aq}) + \text{Cl}^-(\text{aq}) \quad \Delta H_{\text{hyd}} = -784 \text{ kJ} \]
\[\text{NaCl (s)} \rightarrow \text{Na}^+(\text{aq}) + \text{Cl}^-(\text{aq}) \quad \Delta H_{\text{soln}} = 4 \text{ kJ} \]

Thus the mixture cools slightly.
1 calorie (cal) = 4.184 J
1000 cal = 1 Calorie (Cal) = 1 food Calorie

These numbers can be determined in a bomb calorimeter.
Periodic Table of the Elements

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>Element</th>
<th>Atomic Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>(1)</td>
<td>H</td>
<td>1.0080</td>
</tr>
<tr>
<td>IIA</td>
<td>(2)</td>
<td>He</td>
<td>4.0026</td>
</tr>
<tr>
<td>IIIA</td>
<td>(3)</td>
<td>Li</td>
<td>6.9410</td>
</tr>
<tr>
<td>IVA</td>
<td>(4)</td>
<td>Be</td>
<td>9.0122</td>
</tr>
<tr>
<td>VA</td>
<td>(5)</td>
<td>B</td>
<td>10.811</td>
</tr>
<tr>
<td>VIA</td>
<td>(6)</td>
<td>C</td>
<td>12.011</td>
</tr>
<tr>
<td>VIIA</td>
<td>(7)</td>
<td>N</td>
<td>14.007</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(8)</td>
<td>O</td>
<td>15.999</td>
</tr>
<tr>
<td>VIIIC</td>
<td>(9)</td>
<td>F</td>
<td>18.998</td>
</tr>
<tr>
<td>VIIID</td>
<td>(10)</td>
<td>Ne</td>
<td>20.179</td>
</tr>
<tr>
<td>IA</td>
<td>(11)</td>
<td>Na</td>
<td>22.990</td>
</tr>
<tr>
<td>IIA</td>
<td>(12)</td>
<td>Mg</td>
<td>24.305</td>
</tr>
<tr>
<td>IIIA</td>
<td>(13)</td>
<td>Al</td>
<td>26.982</td>
</tr>
<tr>
<td>IVA</td>
<td>(14)</td>
<td>Si</td>
<td>28.086</td>
</tr>
<tr>
<td>VA</td>
<td>(15)</td>
<td>P</td>
<td>30.974</td>
</tr>
<tr>
<td>VIA</td>
<td>(16)</td>
<td>S</td>
<td>32.066</td>
</tr>
<tr>
<td>VIIA</td>
<td>(17)</td>
<td>Cl</td>
<td>35.453</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(18)</td>
<td>Ar</td>
<td>39.944</td>
</tr>
<tr>
<td>IA</td>
<td>(19)</td>
<td>K</td>
<td>39.098</td>
</tr>
<tr>
<td>IIA</td>
<td>(20)</td>
<td>Ca</td>
<td>40.078</td>
</tr>
<tr>
<td>IIIA</td>
<td>(21)</td>
<td>Sc</td>
<td>44.956</td>
</tr>
<tr>
<td>IVA</td>
<td>(22)</td>
<td>Ti</td>
<td>47.880</td>
</tr>
<tr>
<td>VA</td>
<td>(23)</td>
<td>V</td>
<td>50.942</td>
</tr>
<tr>
<td>VIA</td>
<td>(24)</td>
<td>Cr</td>
<td>51.996</td>
</tr>
<tr>
<td>VIIA</td>
<td>(25)</td>
<td>Mn</td>
<td>54.938</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(26)</td>
<td>Fe</td>
<td>55.847</td>
</tr>
<tr>
<td>VIIIC</td>
<td>(27)</td>
<td>Co</td>
<td>58.933</td>
</tr>
<tr>
<td>VIIID</td>
<td>(28)</td>
<td>Ni</td>
<td>58.690</td>
</tr>
<tr>
<td>VIIIE</td>
<td>(29)</td>
<td>Cu</td>
<td>63.546</td>
</tr>
<tr>
<td>VIIIF</td>
<td>(30)</td>
<td>Zn</td>
<td>65.380</td>
</tr>
<tr>
<td>VIIIG</td>
<td>(31)</td>
<td>Ga</td>
<td>69.723</td>
</tr>
<tr>
<td>VIIIH</td>
<td>(32)</td>
<td>Ge</td>
<td>72.610</td>
</tr>
<tr>
<td>VIIIJ</td>
<td>(33)</td>
<td>As</td>
<td>74.922</td>
</tr>
<tr>
<td>VIIK</td>
<td>(34)</td>
<td>Se</td>
<td>77.960</td>
</tr>
<tr>
<td>VIIIL</td>
<td>(35)</td>
<td>Br</td>
<td>79.904</td>
</tr>
<tr>
<td>VIIIM</td>
<td>(36)</td>
<td>Kr</td>
<td>83.800</td>
</tr>
<tr>
<td>IA</td>
<td>(37)</td>
<td>Rb</td>
<td>85.468</td>
</tr>
<tr>
<td>IIA</td>
<td>(38)</td>
<td>Sr</td>
<td>87.620</td>
</tr>
<tr>
<td>IIIA</td>
<td>(39)</td>
<td>Y</td>
<td>88.906</td>
</tr>
<tr>
<td>IVA</td>
<td>(40)</td>
<td>Zr</td>
<td>91.224</td>
</tr>
<tr>
<td>VA</td>
<td>(41)</td>
<td>Nb</td>
<td>92.906</td>
</tr>
<tr>
<td>VIA</td>
<td>(42)</td>
<td>Mo</td>
<td>95.940</td>
</tr>
<tr>
<td>VIIA</td>
<td>(43)</td>
<td>Tc</td>
<td>98.907</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(44)</td>
<td>Ru</td>
<td>101.07</td>
</tr>
<tr>
<td>VIIIC</td>
<td>(45)</td>
<td>Rh</td>
<td>102.91</td>
</tr>
<tr>
<td>VIIID</td>
<td>(46)</td>
<td>Pd</td>
<td>106.42</td>
</tr>
<tr>
<td>VIIIE</td>
<td>(47)</td>
<td>Ag</td>
<td>107.87</td>
</tr>
<tr>
<td>VIIIF</td>
<td>(48)</td>
<td>Cd</td>
<td>112.41</td>
</tr>
<tr>
<td>VIIIG</td>
<td>(49)</td>
<td>In</td>
<td>114.82</td>
</tr>
<tr>
<td>VIIIH</td>
<td>(50)</td>
<td>Sn</td>
<td>116.71</td>
</tr>
<tr>
<td>VIIIJ</td>
<td>(51)</td>
<td>Sb</td>
<td>121.75</td>
</tr>
<tr>
<td>VIIK</td>
<td>(52)</td>
<td>Te</td>
<td>127.60</td>
</tr>
<tr>
<td>VIIIL</td>
<td>(53)</td>
<td>I</td>
<td>129.90</td>
</tr>
<tr>
<td>VIIIM</td>
<td>(54)</td>
<td>Xe</td>
<td>131.32</td>
</tr>
<tr>
<td>IA</td>
<td>(55)</td>
<td>Cs</td>
<td>132.91</td>
</tr>
<tr>
<td>IIA</td>
<td>(56)</td>
<td>Ba</td>
<td>137.33</td>
</tr>
<tr>
<td>IIIA</td>
<td>(57)</td>
<td>La</td>
<td>138.91</td>
</tr>
<tr>
<td>IVA</td>
<td>(58)</td>
<td>Ce</td>
<td>140.12</td>
</tr>
<tr>
<td>VA</td>
<td>(59)</td>
<td>Pr</td>
<td>140.91</td>
</tr>
<tr>
<td>VIA</td>
<td>(60)</td>
<td>Nd</td>
<td>144.24</td>
</tr>
<tr>
<td>VIIA</td>
<td>(61)</td>
<td>Pm</td>
<td>145.91</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(62)</td>
<td>Sm</td>
<td>150.36</td>
</tr>
<tr>
<td>VIIIC</td>
<td>(63)</td>
<td>Eu</td>
<td>151.97</td>
</tr>
<tr>
<td>VIIID</td>
<td>(64)</td>
<td>Gd</td>
<td>157.25</td>
</tr>
<tr>
<td>VIIIE</td>
<td>(65)</td>
<td>Tb</td>
<td>158.93</td>
</tr>
<tr>
<td>VIIIF</td>
<td>(66)</td>
<td>Dy</td>
<td>162.50</td>
</tr>
<tr>
<td>VIIIG</td>
<td>(67)</td>
<td>Ho</td>
<td>164.93</td>
</tr>
<tr>
<td>VIIIH</td>
<td>(68)</td>
<td>Er</td>
<td>167.26</td>
</tr>
<tr>
<td>VIIIJ</td>
<td>(69)</td>
<td>Tm</td>
<td>168.93</td>
</tr>
<tr>
<td>VIIK</td>
<td>(70)</td>
<td>Yb</td>
<td>173.04</td>
</tr>
<tr>
<td>VIIIL</td>
<td>(71)</td>
<td>Lu</td>
<td>174.97</td>
</tr>
<tr>
<td>IA</td>
<td>(72)</td>
<td>Th</td>
<td>232.04</td>
</tr>
<tr>
<td>IIA</td>
<td>(73)</td>
<td>Pa</td>
<td>231.04</td>
</tr>
<tr>
<td>IIIA</td>
<td>(74)</td>
<td>U</td>
<td>238.03</td>
</tr>
<tr>
<td>IVA</td>
<td>(75)</td>
<td>Pu</td>
<td>237.05</td>
</tr>
<tr>
<td>VA</td>
<td>(76)</td>
<td>Am</td>
<td>244.06</td>
</tr>
<tr>
<td>VIA</td>
<td>(77)</td>
<td>Cm</td>
<td>243.06</td>
</tr>
<tr>
<td>VIIA</td>
<td>(78)</td>
<td>Bk</td>
<td>247.07</td>
</tr>
<tr>
<td>VIIIB</td>
<td>(79)</td>
<td>Cf</td>
<td>247.07</td>
</tr>
<tr>
<td>VIIIC</td>
<td>(80)</td>
<td>Es</td>
<td>252.08</td>
</tr>
<tr>
<td>VIIID</td>
<td>(81)</td>
<td>Fm</td>
<td>257.10</td>
</tr>
<tr>
<td>VIIIE</td>
<td>(82)</td>
<td>Md</td>
<td>258.10</td>
</tr>
<tr>
<td>VIIIF</td>
<td>(83)</td>
<td>No</td>
<td>259.10</td>
</tr>
<tr>
<td>VIIIG</td>
<td>(84)</td>
<td>Lr</td>
<td>260.11</td>
</tr>
</tbody>
</table>